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Hierarchical Edge Bundles:

Visualization of Adjacency Relations in Hierarchical Data

Danny Holten

Abstract—A compound graph is a frequently encountered type of data set. Relations are given between items, and a hierarchy is
defined on the items as well. We present a new method for visualizing such compound graphs. Our approach is based on visually
bundling the adjacency edges, i.e., non-hierarchical edges, together. We realize this as follows. We assume that the hierarchy is
shown via a standard tree visualization method. Next, we bend each adjacency edge, modeled as a B-spline curve, toward the
polyline defined by the path via the inclusion edges from one node to another. This hierarchical bundling reduces visual clutter
and also visualizes implicit adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes. Furthermore, hierarchical edge bundling is a generic method which can be used in conjunction with existing
tree visualization techniques. We illustrate our technique by providing example visualizations and discuss the results based on an
informal evaluation provided by potential users of such visualizations.

Index Terms—Network visualization, edge bundling, edge aggregation, edge concentration, curves, graph visualization, tree visual-
ization, node-link diagrams, hierarchies, treemaps.
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1 INTRODUCTION

There is a large class of data sets that contain both hierarchical
components, i.e., parent-child relations between data items, as well
as non-hierarchical components representing additional relations be-
tween data items. Parent-child relations are henceforth called in-
clusion relations, whereas additional, non-hierarchical relations are
henceforth called adjacency relations. Some examples of such data
sets are:

• A hierarchically organized software system, e.g., source code di-
vided into directories, files, and classes, and the relations be-
tween these elements, for instance, dependency relations;

• Social networks comprised of individuals at the lowest level of
the hierarchy and groups of individuals at higher levels of the
hierarchy. Relations could indicate if (groups of) people are ac-
quainted and what the nature of their relationship is;

• A hierarchically organized citation network consisting of publi-
cations at the lowest level of the hierarchy and departments and
institutes at higher levels of the hierarchy. Links between publi-
cations indicate one publication citing the other.

If we want to gain more insight in the hierarchical organization of
each of the examples mentioned above, we can visualize the hierar-
chical structure using one of the many tree visualization methods that
have been proposed in the past [2, 7, 15, 18, 24, 27]. However, if we
want to visualize additional adjacency edges on top of this by adding
edges in a straightforward way, this generally leads to visual clutter
[3] (see figure 2a).

A possible way to alleviate this problem is to treat the tree and
the adjacency graph as a single graph. Let the tree be represented
by T = (V,EI) and the adjacency graph by G(V,EA). If the inclusion
edges EI and the adjacency edges EA are merged into a single set of
uniform edges, then the graph G′ = (V,EI ,EA) can be visualized us-
ing a generic graph layout algorithm [2, 12, 15]. The problem that
results from resorting to such a generic algorithm is that the inclusion
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and adjacency edges become intertwined, which can make it difficult
to visually separate both types of edges from each other.

At present, only few techniques are available that are specifically
designed to display adjacency relations on top of a tree structure, as
is also mentioned by Neumann et al. [20]. Hence, the focus of this
paper is on the construction of a generic technique for the visualiza-
tion of compound graphs and compound directed graphs (digraphs)
comprised of a tree and an additional (directed) adjacency graph.

We present hierarchical edge bundles, as described below, for the
visualization of compound (di)graphs. Hierarchical edge bundling is
based on the principle of visually bundling adjacency edges together
analogous to the way electrical wires and network cables are merged
into bundles along their joint paths and fanned out again at the end,
in order to make an otherwise tangled web of wires and cables more
manageable. The main features of the proposed technique are as fol-
lows:

• Hierarchical edge bundling is a flexible and generic method that
can be used in conjunction with existing tree visualization tech-
niques to enable users to choose the tree visualization that they
prefer and to facilitate integration into existing tools;

• Hierarchical edge bundling reduces visual clutter when dealing
with large numbers of adjacency edges;

• Hierarchical edge bundling provides an intuitive and continuous
way to control the strength of bundling. Low bundling strength
mainly provides low-level, node-to-node connectivity informa-
tion, whereas high bundling strength provides high-level infor-
mation as well by implicit visualization of adjacency edges be-
tween parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

The remaining part of this paper is organized as follows. In sec-
tion 2 we give an overview of tree visualization techniques and exist-
ing techniques for visualizing additional adjacency edges. Section 3
describes the proposed hierarchical edge bundling technique in detail,
followed by section 4, in which we present example visualizations and
an informal evaluation. Finally, section 5 presents conclusions and
possible directions for future work.

2 RELATED WORK

Since hierarchical edge bundles can be used in conjunction with ex-
isting tree visualization techniques, we first give an overview of tech-
niques that are commonly used for visualizing trees, followed by an
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Fig. 1. Common tree visualization techniques. From left-to-right: rooted tree, radial tree, balloon tree, and treemap layout.

overview of methods that can be used to display adjacency edges on
top of a tree visualization. Current methods for aggregating edges are
mentioned as well.

2.1 Tree Visualization Techniques

One of the most well-known tree visualizations is the rooted tree de-
picted in figure 1 [2, 15, 24]. The rooted tree is an example of a tree
visualization based on the intuitive node-link representation: the rela-
tionship between parent and child nodes is depicted by means of lines
that connect the nodes. The top-down layout positions child nodes be-
low their respective parent nodes and is the most common rooted tree
layout; a variation on this is the left-to-right layout. The radial layout
shown in figure 1 is another example of a node-link representation. In
this layout, nodes are placed on concentric circles according to their
depth in the tree [2, 7, 15]. The balloon layout shown in figure 1 is
a node-link representation in which sibling subtrees are included in
circles attached to the parent node [15].

Although radial and balloon layout techniques utilize the available
space somewhat more efficiently than rooted layout techniques, node-
link representations do not make optimal use of the available space in
general. The treemap layout shown in figure 1 is a space-filling layout
technique that displays a tree structure by means of enclosure, which
makes it an ideal technique for displaying large trees [27].

However, using enclosure to display the tree structure makes it more
difficult for viewers to perceive the hierarchical relationship between
nodes. Furthermore, node-link representations can be made more
space-efficient by using a focus+context (fisheye) technique; an exam-
ple is the layout of a tree on a hyperbolic plane which is subsequently
mapped onto a circular display region [18].

Visualization techniques that combine node-link representations
and enclosure to offer a trade-off between an intuitive display and ef-
ficient space usage for displaying large trees exist as well. Examples
are elastic hierarchies [32], SHriMP views [28], and space-optimized
tree visualization [21].

Finally, 3D visualization techniques provide another way of achiev-
ing a more efficient use of space, although occlusion problems usually
occur as a result of projecting 3D geometry onto a 2D screen. This
makes interaction techniques – particularly options for changing the
viewpoint – an essential part of these visualization techniques. Exam-
ples of 3D tree visualization techniques are cone trees [26] and H3, a
3D hyperbolic visualization [19].

2.2 Displaying Adjacency Relations

As mentioned earlier, simply adding adjacency edges to a tree visual-
ization in a straightforward way quickly leads to visual clutter if a large
number of edges is visualized (figure 2a). Fekete et al. [10] present a
technique that displays the hierarchical structure as a treemap and the
adjacency edges as curved links. The links are depicted as quadratic
Bézier curves that show direction using curvature without requiring an
explicit arrow. However, figure 2b shows that this technique suffers
from visual clutter as well when many links are visualized. SHriMP
views also use lines and curves added in a straightforward way for vi-
sualizing adjacency relations [28]. The 3D hyperbolic visualization

H3 mentioned in section 1 also supports showing or hiding adjacency
edges (added in a straightforward way) for a selected node or subtree
[19].

Methods for drawing clustered graphs, which are graphs with re-
cursive clustering structures over the vertices, are presented by Eades
et al. [8, 11]. Furthermore, Kaufmann et al. provide a more general
survey on drawing clusters (and hierarchies) [16]. In a sense, clustered
graphs are similar to compound graphs in that they contain a hierarchi-
cal component as a result of their recursive clustering structure as well
as non-hierarchical connections between the vertices of said clusters.
However, the drawing of clustered graphs as presented by Eades et al.
cannot be used as a method for drawing adjacency relations in con-
junction with existing tree visualization techniques, since the layouts
provided by their methods are fixed.

A similar remark holds for the use of force-directed algorithms for
the layout of compound graphs, like the method presented by Dogru-
soz et al. [6]. Issues with regard to computational complexity and
layout stability have also been associated with force-directed methods
[15]. However, these issues have recently been treated by various ap-
proaches [14, 17]. Most of these approaches also use a deterministic
model to prevent the highly unpredictable layouts that were often pro-
duced by previous force-directed methods.

Another method for drawing compound graphs that originated in
the graph drawing community is described by Sugiyama et al. [29].
In this method and its variations, nodes are drawn as rectangles, in-
clusion edges by the geometric inclusion among the rectangles, and
adjacency edges by polylines connecting them [4, 23, 29]. Although
this approach works fine for small compound digraphs as depicted in
figure 2c, it does not scale very well for compound graphs containing
a large hierarchy due to the inefficient usage of space.

A similar remark holds for ArcTrees as depicted in figure 2d, a
hierarchical view derived from traditional treemaps that is augmented
with arcs to depict adjacency relations [20]. This is a result of the fact
that ArcTrees were primarily designed as an informative interactive
tool for viewing documents and one of the requirements was to use as
little screen space as possible because the majority of the space will be
needed for the document itself.

Matrix views as depicted in figure 2e can be used as an alternative to
node-link- and enclosure-based representations for showing adjacency
relations between entities. The hierarchy is displayed along the axes
of the matrix and adjacency relations are shown within the matrix as
shaded cells [30, 33]. Matrix views present a stable and clean layout
of the adjacency relations, but they are less intuitive than node-link-
and enclosure-based representations [13, 30].

2.3 Edge Aggregation Techniques

Existing techniques that are related to edge aggregation are confluent
graph drawing [5, 9] and flow map layouts [22].

Confluent graph drawing is a technique for visualizing non-planar
graphs in a planar way by allowing groups of edges to be merged and
drawn together [5, 9]. However, not every graph is confluently draw-
able and in general, it appears difficult to quickly determine whether
or not a graph can be drawn confluently.
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Fig. 2. Displaying adjacency relations using existing methods. A call graph visualized on top of the associated source code tree using (a) color-
coded directed straight edges and (b) curved link edges (caller = green, callee = red); (c) standard compound digraph drawing; (d) ArcTrees for
visualizing relations in hierarchical data; (e) a matrix view for showing relations between entities. (a) and (b) suffer from visual clutter, (c) and (d)
furthermore suffer from the problem that they do not scale well for compound graphs containing a large hierarchy, and (e) is less intuitive than
node-link- and enclosure-based representations.

Flow map layouts use hierarchical, binary clustering on a set of
nodes, positions, and flow data to route edges [22]. As mentioned by
Phan et al. [22], the biggest drawback is that all edge splits are binary;
binary splits introduce too many extra routing nodes and lead to clutter
if there are too many nodes in a small area.

3 HIERARCHICAL EDGE BUNDLES

This section provides a detailed description of our technique. Sec-
tion 3.1 describes the basic idea behind hierarchical edge bundles, fol-
lowed by section 3.2, in which the principles mentioned in section 3.1
are described in more detail. Additional design decisions for improv-
ing the layout are mentioned here as well. Finally, in section 3.3, de-
tails regarding the actual rendering of the bundles are discussed that
further improve the final visualization.

3.1 Principle

Since we want our approach to be usable in conjunction with existing
tree visualization techniques, we propose to use the layout provided
by a tree visualization as a guide for bundling the adjacency edges.
Figure 3 illustrates how this is done by using a balloon tree layout as an
example. The approach is to use the path along the hierarchy between
two nodes having an adjacency relation as the control polygon of a
spline curve; the resulting curve is subsequently used to visualize the
relation. The control points Pi that make up the control polygon are
the points along the hierarchy from PStart through LCA(PStart ,PEnd) to
PEnd , where LCA(PStart ,PEnd) is the least common ancestor of PStart

and PEnd (see figure 3).

Fig. 3. Bundling adjacency edges by using the available hierarchy. (a)
Straight line connection between P0 and P4; (b) path along the hierarchy
between P0 and P4; (c) spline curve depicting the connection between
P0 and P4 by using the path from (b) as the control polygon.

If this approach is used directly for bundling adjacency edges, am-
biguity problems as depicted in figure 4a may arise. These problems
can be reduced by diminishing the bundling strength. The bundling
strength is controlled by a parameter β , β ∈ [0,1], that effectively
controls the amount of bundling by straightening the spline curve. Fig-
ure 4d shows the effect of this parameter and figure 4e illustrates how
this can be used to resolve ambiguity problems.

Fig. 4. Resolving bundling ambiguity. The bundle in (a) might contain
each edge depicted in (b). (c) and (d) show how different values of β
(red = 1, green = 2

3
, and blue = 1

3
) can be used to alter the shape of spline

curves. As shown in (e), a fairly high bundling strength (β = 0.8) can be
chosen to retain visual bundles while still resolving ambiguity.

3.2 Spline Models

Different spline models were investigated for visualizing the curves.
We used weighted as well as non-weighted Bézier, B-spline, and Beta-
spline curves [1] of different degrees and we also investigated hybrid
approaches in which different spline curves were blended together us-
ing a weighted blending model.

Bézier curves lack the local control necessary to produce coherent
and distinct bundles. Different combinations of the additional bias
and tension parameters provided by Beta-splines did not result in bet-
ter bundling behavior when compared to traditional B-splines. Using
weighted instead of non-weighted B-splines did not readily improve
the bundling either. We settled on a piecewise cubic B-spline repre-
sentation, since this representation provided the amount of local con-
trol necessary for producing coherent and distinct bundles while keep-
ing the degree – and with it the computational complexity – low. An
open uniform knot vector of order 4 (degree = 3) which has degree−1
equal-valued knots at each end is employed to make the cubic B-spline
interpolate its start and end points. The degree is automatically re-
duced to 2 or 1 if the number of control points is 3 or 2, respectively,
since it is required that the degree is lower than the number of control
points.
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We investigated two ways of straightening a spline curve. The first
method straightens the control polygon (as depicted in figure 4) by
straightening each of its control points Pi and subsequently uses these
straightened control points P′

i as the new control polygon to generate
the spline curve:

P′
i = β ·Pi +(1−β )(P0 +

i

N −1
(PN−1 −P0)), (1)

with
N : number of control points,
i : control point index, i ∈ {0, . . . ,N −1},
β : bundling strength, β ∈ [0,1].

The second method straightens each spline point S(t) when the
curve is evaluated to create a new, straightened spline point S′(t):

S′(t) = β ·S(t)+(1−β )(P0 + t(PN−1 −P0)), (2)

with
t : spline curve parameter, t ∈ [0,1].

Due to the open uniform knot vector that is used to make the B-
spline interpolate its start and end points, these methods yield some-
what different results. However, these differences are minimal from a
visual point of view, as is illustrated in figure 5.

Let M denote the number of line segments that is used to draw the
spline. In general, M ≥ 50 is required to get a smooth spline repre-
sentation. Hence, the first straightening method is preferable, since
this only involves N straightening operations, with N ≤ 2D + 1 for
hierarchies of depth D, whereas the second method requires M + 1
straightening operations.

Fig. 5. Spline curve straightening by means of control polygon straight-
ening (green) and spline point straightening (red) yield somewhat dif-
ferent results, but these differences are minimal from a visual point of
view.

In general, it is not desirable to have connections between sibling
nodes curve toward their common parent node, since the curvature
does not provide additional high-level connectivity information; in this
case, the curving would only unnecessarily clutter the display space
around the common parent node. Removing the LCA from the origi-
nal control polygon of a spline curve effectively prevents connections
between sibling nodes from curving toward their common parent node,
as is illustrated in figure 6.

However, figure 7a shows how removal of the LCA can lead to am-
biguity problems if the original control polygons only contains three
control points. LCA removal reduces a spline curve to a straight line in
this case and the pictured ambiguity is the result of these straight line
segments completely coinciding.

Figure 7b shows how this problem can be resolved while retaining
the aforementioned benefit of LCA removal in the general case. This is
accomplished by only allowing the LCA to be removed if the original
control polygon is comprised of more than 3 control points.

3.3 Rendering

An important aspect of visualizing the curves is the order in which they
are drawn. Since short curves only occupy a small amount of screen
space, they tend to become obscured by long curves. This problem can
be resolved by drawing short curves on top of long curves. In addition,

Fig. 6. Removing the LCA from the original control polygon. A tree
of depth 2 and its additional adjacency graph (β = 0.85) visualized as a
treemap with (a) LCA present, and (b) LCA removed. LCA removal effec-
tively prevents connections between sibling nodes from curving toward
their common parent node.

Fig. 7. Removal of the LCA can lead to ambiguity problems if the original
control polygons only contains three control points. (a) It is unclear how
sibling nodes A, B, and C are connected to each other due to straight
line segments fully coinciding; (b) the problem can be resolved by re-
quiring that the LCA may only be removed if the original control polygon
is comprised of more than 3 control points.

we use alpha blending to further emphasize short curves by drawing
long curves at a lower opacity than short curves; figure 8 shows an
example of this.

Fig. 8. Alpha blending can be used to emphasize short curves by draw-
ing long curves at a lower opacity than short curves. (a) Alpha blending
disabled; (b) alpha blending enabled.

As is illustrated in figure 10, alpha blending also helps to more eas-
ily discern individual curves or subbundles within a bundle.

Curved links [10] show how curvature can be used to indicate di-
rection. We cannot readily use curvature to show direction, because
we already use it for generating bundles. Furthermore, we do not use
explicit arrows since doing so would clutter the visualization [10]. In-
stead, we show the direction of an edge by using an RGB interpolated
color gradient to indicate the edge running from source (green) to des-
tination (red), as is already illustrated by the non-bundled examples
shown in figure 2.
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Fig. 9. Using OpenGL’s EXT blend minmax extension. (a) and (b) show normal alpha blending on a white and black background, respectively;
(c) and (d) show the usage of standard MIN EXT (minimum) and MAX EXT (maximum) blending, respectively. An individual curve within the bundle
having an opposite direction can easily be discerned; (e) shows a transparency mask generated using normal alpha blending, which can be
combined with the results depicted in (c) and (d); (f) and (g) show how this provides these results with additional levels of opacity (as is the case
with standard alpha blending as depicted in (a) and (b)). The transparency mask furthermore allows them to be combined with other background
colors than black and white. This combines the benefits of normal alpha blending and standard MIN EXT and MAX EXT blending.

Fig. 10. Alpha blending helps to distinguish individual curves or sub-
bundles within a bundle. (a) Alpha blending disabled; (b) alpha blending
enabled.

An interesting variation on standard alpha blending is provided
by the EXT blend minmax extension available in OpenGL 1.2 and
higher. This extension can return the minimum or the maximum of two
colors (source and destination) on a per-color-channel basis. In case of
bundles that are mainly comprised of curves having a similar direction,
these blending modes can be used to spot individual curves within the
bundle having an opposite direction. Moreover, the blending modes
are commutative, resulting in identical visualizations regardless of the
order in which curves are drawn. Figure 9 shows an example of using
the extension.

4 RESULTS

The examples shown in this section are visualizations of a hierarchi-
cally organized software system and its associated call graph. The
software is part of a medical scanner and was provided by Philips
Medical Systems Eindhoven. Three hierarchy levels – layers, units,
and modules – consisting of 284 nodes are used together with the as-
sociated call graph for the elements at the lowest level of the hierarchy,
i.e., 1,011 adjacency relations representing module-to-module calls.
Figures 2a and 11 show non-bundled visualizations using a balloon,
radial, and squarified treemap layout; figures 13 and 15 show the bun-
dled versions. Figure 12 depicts how the radial visualization shown in
figure 13 was generated.

The non-bundled visualizations mainly show hot spots; the actual
connectivity information is more difficult to discern due to visual clut-
ter. Figures 13 and 15 show how bundling reduces visual clutter, mak-
ing it easier to perceive the actual connections. The bundled visual-
izations also show relations between sparsely connected systems more
clearly (visible within the encircled regions); these are almost com-
pletely obscured in the non-bundled versions.

Fig. 11. A software system and its associated call graph (caller = green,
callee = red). (a) and (b) show the system without bundling using a radial
and a squarified treemap layout (node labels disabled), respectively. (a)
and (b) mainly show hot spots; the actual connectivity information is
more difficult to discern due to visual clutter.

Fig. 12. Radial layout construction. (a) A radial tree layout is used for
the inner circle and subsequently mirrored to the outside; (b) the inner
layout is hidden and its structure is used to guide the adjacency edges.
An icicle plot based on the mirrored layout is used to show the hierarchy.

4.1 User Feedback

We organized informal user studies to demonstrate our application and
the resulting visualizations. Participants from academia and indus-
try examined the Philips Medical Systems software by interactively
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Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength β = 0.85

using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the
actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between
sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled
regions highlight identical parts of the system for (a), (b), and figure 15.

Fig. 14. Using the bundling strength β to provide a trade-off between low-level and high-level views of the adjacency relations. The value of β
increases from left-to-right; low values mainly provide low-level, node-to-node connectivity information, whereas high values provide high-level
information as well by implicit visualization of adjacency edges between parent nodes that are the result of explicit adjacency edges between their
respective child nodes.

changing the bundling strength β and by switching between differ-
ent tree layouts. The participants from academia were our fellow re-
searchers, PhD students and MSc students from the Computer Science
department of the Technische Universiteit Eindhoven. They all had ex-
perience with either software development, software visualization, or
information visualization in general. Participants from industry were
representatives of the Software Improvement Group (SIG) in Amster-
dam, which delivers insight in the structure and technical quality of
software portfolios, and representatives of FEI Company Eindhoven,
which produces software to operate with FEI’s range of electron mi-
croscopes.

The majority of the participants regarded the technique as useful
for quickly gaining insight in the adjacency relations present in hier-
archically organized systems. In general, the visualizations were also
regarded as being aesthetically pleasing. SIG and FEI Company Eind-
hoven are currently supporting further development by providing us
with additional data sets and feedback regarding the resulting visual-
izations.

More specifically, most of the participants particularly valued the
fact that relations between items at low levels of the hierarchy were
automatically lifted to implicit relations between items at higher lev-
els by means of bundles. This quickly gave them an impression of the
high-level connectivity information while still being able to inspect
the low-level relations that were responsible for the bundles by inter-
actively manipulating the bundling strength.

This is illustrated in figure 14, which shows visualizations using
different values for the bundling strength β . Low values result in vi-
sualizations that mainly provide low-level, node-to-node connectivity
information. High values result in visualizations that provide high-
level information as well by implicit visualization of adjacency edges
between parent nodes that are the result of explicit adjacency edges
between their respective child nodes.

Another aspect that was commented on was how the bundles gave
an impression of the hierarchical organization of the data as well,
thereby strengthening the visualization of the hierarchy. More specif-
ically, a thick bundle shows the presence of two elements at a fairly
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Fig. 15. The software system from figure 13 and its associated call
graph (caller = green, callee = red) visualized using a squarified treemap
layout (node labels disabled) for comparison with figure 11b. The encir-
cled regions highlight the same parts of the system as in figure 13.

high level of the hierarchy, whereas the fanning out of a bundle shows
the subdivision of an element into subelements.

Most participants preferred the radial layout over the balloon layout
and the squarified treemap layout. Another finding was the fact that the
rooted layout and the slice-and-dice treemap layout were considered
less pleasing according to several participants. This is probably due to
the large number of collinear nodes within these layouts, which causes
bundles to overlap along the collinearity axes. This is illustrated in
figure 17.

Although our main focus while developing hierarchical edge bun-
dles was on the visualization itself, interaction is an important aspect
in determining the usability of our technique. Based on our own in-
sight and feedback gathered from participants, we contend that bundle-
based interaction as described below could provide a convenient way
of interacting with the visualizations.

Figure 16 shows how the bundling strength β could be used in con-
junction with bundle-based interaction. The use-case scenario illus-
trated in figure 16 shows a user starting with a low-level view (fig-
ure 16a). Since the display is highly cluttered, the user increases the
bundling strength, resulting in a bundled visualization in which areas
of interest can be spotted as bundles. A bundle can subsequently be
selected by dragging a line through it (figure 16b). As a result of this,
only selected curves remain visible. Finally, the user decreases the
bundling strength again to return to a more detailed, low-level view
(figure 16c). In this view, the individual curves comprising the se-
lected bundle can be further inspected without being hindered by the
large amount of visual clutter that was initially present.

4.2 Performance

Our prototype application was implemented on Microsoft Windows
XP Professional using Borland Delphi 7. OpenGL was used as the
graphics API. The application provided real-time performance (10
frames per second or more) for the examples shown in this section
on our development systems, a Dell OptiPlex GX280 PC with an Intel
Pentium 4 3.0GHz CPU, an ATI Radeon X300 graphics card, and 1GB
of RAM.

Fig. 16. Bundle-based interaction. (a) A user starts with a low-level view;
(b) the bundling strength is increased and areas of interest emerge as
bundles, which can be selected by dragging a line through them; (c) only
selected curves remain visible and the user returns to an uncluttered
low-level view to further inspect individual curves.

5 CONCLUSIONS AND FUTURE WORK

We have introduced hierarchical edge bundling as a flexible and
generic technique for the visualization of compound (di)graphs. We
have demonstrated how hierarchical edge bundles can be used in con-
junction with existing tree visualization techniques, how a bundle-
based visualization is capable of reducing visual clutter, and how the
bundling strength β can be used to provide a continuous trade-off be-
tween a low-level and a high-level view of the adjacency relations. We
have also illustrated how the use of more advanced blending modes
than standard alpha blending can provide a valuable addition to the
rendering of hierarchical edge bundles. Based on our own experiences
with our prototype application and feedback from participants of our
informal user study, a preliminary, bundle-centric way of interacting
with the visualizations has been presented as well.

The majority of our CS staff, students and local companies that par-
ticipated in our informal user study considered the technique useful for
quickly gaining insight in the adjacency relations present in hierarchi-
cally organized systems. Furthermore, they regarded the visualizations
as being aesthetically pleasing.

As far as limitations are concerned, we currently consider the bun-
dle overlap in case of layouts with a large number of collinear nodes
to be the biggest problem of hierarchical edge bundles.

Fig. 17. Collinearity problems. The rooted tree layout (a) and the slice-
and-dice treemap layout (b) were found to be less pleasing. This is
probably due to the large number of collinear nodes within these layouts,
which causes bundles to overlap along the collinearity axes, as is visible
within the encircled regions.

The most important direction for future work would be the im-
plementation of the suggested bundle-centric interaction technique as
well as zooming techniques to allow users to inspect subparts of a data
set in more detail. We are planning to make this extended version
of our application available online as well to allow users to examine
their own data sets by importing them into our application using Rigi
Standard Format (RSF) [25]. Subsequently, user experiments, e.g., in
collaboration with SIG and FEI Company, have to be performed to
gain insight in the practical usability of our technique in conjunction
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with the provided interaction techniques.

Another point of interest for future work would be to provide a way
to locally decrease the bundling strength to allow a user to inspect
individual curves within a bundle without having to modify the global
bundling strength β . The EdgeLens approach presented by Wong et
al. [31] provides one way to accomplish this. This approach manages
edge congestion by interactively curving edges away from the point of
focus, which opens up sufficient space to disambiguate relationships.

While we have focused on reducing visual clutter by bundling edges
together, it would moreover be worthwhile to investigate how addi-
tional node reordering could be used to further reduce visual clutter in
case of data in which node order is irrelevant.

Finally, feedback from participants of our informal user study in-
dicated that in addition to visualizing and exploring hierarchies and
adjacency relations, functionality for editing the data, i.e., by interac-
tively reordering data elements to perform what-if investigations, is a
future research direction that is worth considering as well.
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